23 research outputs found

    Achieving Quality of Service in Group Scheduling in Cellular Networks

    Get PDF
    Title from PDF of title page, viewed on July 17, 2014Thesis advisor: Cory BeardVitaIncludes bibliographic references (pages 51-55)Thesis (M. S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2014Cellular 3G/4G networks provide a wonderfully rich set of applications and social networking capabilities. From a QoS perspective, the traffic is basically divided into Real time and Non real time traffic which helps in scheduling priorities to the packets. With increase in need for QoS in the commercial networks, scheduling schemes such as MLWDF (Modified Largest Weighted Delay First) are playing a prominent role in deciding factors of packet selection. But most of these features are not available to public safety and emergency organizations where these organizations must use dedicated systems to obtain the reliability and protected performance that is needed. This research work provides a brief survey of the regulatory and commercial issues involved. The research work then provides solutions to give real-time and non-real-time traffic scheduling priorities to balance different requirements. We introduce the concept of a queue indicator that uses queue awareness to decide which traffic type to transmit. Then we introduce the concept of group scheduling that adds together scheduling metrics of different users within groups to decide which groups should transmit. These metrics are both opportunistic to take advantage of changing channel conditions and they are queue aware to adapt to traffic conditions. But the metrics are very simple so that scheduling mechanisms are practical and scalable for implementations. These are all evaluated through a detailed simulator (MATLAB-Simulator) that models long-term and short-term fading impacts. We find the best queue indicator values and then assess different cases where groups have various delay requirements. With the ever increasing number of users and the usage of data in cellular networks, meeting the expectations is a very difficult challenge. To add to the difficulties, the available resources are very limited, so proper management of these resources is very much needed. Scheduling is a key component and having a scheduling scheme which can meet the QoS requirements such as Throughput, Fairness and Delay is importantAbstract -- List of illustrations -- List of tables -- Acknowledgements -- Introduction -- Background -- Scheduler design and related work -- Matlab -- Results and analysis - Reference

    Simulations and Design of a Single-Photon CMOS Imaging Pixel Using Multiple Non-Destructive Signal Sampling

    Get PDF
    A single-photon CMOS image sensor (CIS) design based on pinned photodiode (PPD) with multiple charge transfers and sampling is described. In the proposed pixel architecture, the photogenerated signal is sampled non-destructively multiple times and the results are averaged. Each signal measurement is statistically independent and by averaging, the electronic readout noise is reduced to a level where single photons can be distinguished reliably. A pixel design using this method was simulated in TCAD and several layouts were generated for a 180-nm CMOS image sensor process. Using simulations, the noise performance of the pixel was determined as a function of the number of samples, sense node capacitance, sampling rate and transistor characteristics. The strengths and limitations of the proposed design are discussed in detail, including the trade-off between noise performance and readout rate and the impact of charge transfer inefficiency (CTI). The projected performance of our first prototype device indicates that single-photon imaging is within reach and could enable ground-breaking performances in many scientific and industrial imaging applications

    Detector Systems Engineering for Extremely Large Instruments

    Full text link
    The scientific detector systems for the ESO ELT first-light instruments, HARMONI, MICADO, and METIS, together will require 27 science detectors: seventeen 2.5 μ\mum cutoff H4RG-15 detectors, four 4K x 4K 231-84 CCDs, five 5.3 μ\mum cutoff H2RG detectors, and one 13.5 μ\mum cutoff GEOSNAP detector. This challenging program of scientific detector system development covers everything from designing and producing state-of-the-art detector control and readout electronics, to developing new detector characterization techniques in the lab, to performance modeling and final system verification. We report briefly on the current design of these detector systems and developments underway to meet the challenging scientific performance goals of the ELT instruments.Comment: Proceedings of the SPIE Astronomical Telescopes and Instrumentation Conference 202

    First light with HiPERCAM on the GTC

    Get PDF
    HiPERCAM is a quintuple-beam imager that saw first light on the 4.2 m William Herschel Telescope (WHT) in October 2017 and on the 10.4 m Gran Telescopio Canarias (GTC) in February 2018. The instrument uses re- imaging optics and 4 dichroic beamsplitters to record ugriz (300–1000 nm) images simultaneously on its five CCD cameras. The detectors in HiPERCAM are frame-transfer devices cooled thermo-electrically to 90°C, thereby allowing both long-exposure, deep imaging of faint targets, as well as high-speed (over 1000 windowed frames per second) imaging of rapidly varying targets. In this paper, we report on the as-built design of HiPERCAM, its first-light performance on the GTC, and some of the planned future enhancements

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
    corecore